Solutions to Problem 1.

a. Let λ_{0} be the arrival rate for urgent patients. Let $Y_{0, t}$ be the number of urgent patients that arrive by time t. By the decomposition property, $Y_{0, t}$ follows a Poisson process with arrival rate $\lambda_{0}=0.14(2)=0.28$ patients per hour.

$$
\begin{aligned}
\operatorname{Pr}\left\{Y_{0,12}>6\right\} & =1-\operatorname{Pr}\left\{Y_{0,12} \leq 6\right\} \\
& =1-\sum_{k=0}^{6} \frac{e^{-0.28(12)}\left(0.28(12)^{k}\right.}{k!} \\
& \approx 0.055
\end{aligned}
$$

b. Let λ_{2} be the overall arrival rate. Let $Y_{2, t}$ be the number of patients overall that arrive by time t. By the superposition property, $Y_{2, t}$ follows a Poisson process with arrival rate $\lambda_{2}=2+4=6$ patients per hour.

$$
\begin{aligned}
\operatorname{Pr}\left\{Y_{2,6}>30\right\} & =1-\operatorname{Pr}\left\{Y_{2,6} \leq 30\right\} \\
& =1-\sum_{k=0}^{30} \frac{e^{-6(6)}(6(6))^{k}}{k!} \\
& \approx 0.819
\end{aligned}
$$

Solutions to Problem 2. Let $\lambda_{0}=8$ surges per hour, $\lambda_{1}=1 / 18$ surges per hour, and $\lambda_{2}=1 / 46$ surges per hour. In addition, let $p_{1}=0.005$, and $p_{2}=0.08$.
a. Let Y_{t} be the number of all surges by time t. By the superposition property, Y_{t} follows a Poisson process with rate $\lambda=\lambda_{0}+\lambda_{1}+\lambda_{2} \approx 8.077$ surges per hour. Therefore, $E\left[Y_{8}\right] \approx \lambda \cdot 8 \approx 64.6$.
b. Let $Y_{10, t}$ be the number of small surges that are computer-damaging by time t, and let $Y_{20, t}$ be the number of moderate surges that are computer-damaging by time t. By the decomposition property, $Y_{10, t}$ and $Y_{20, t}$ follow Poisson processes with rates $\lambda_{10}=p_{1} \lambda_{1}=1 / 3600$ and $\lambda_{20}=p_{2} \lambda_{2}=1 / 575$ surges per hour, respectively.
Let $Y_{3, t}$ be the number of computer-damaging surges by time t. By the superposition property, $Y_{3, t}$ is a Poisson process with rate $\lambda_{3}=\lambda_{10}+\lambda_{20} \approx 0.0020$. Therefore, $E\left[Y_{3,8}\right]=\lambda_{3} \cdot 8 \approx 0.016$.
c. $\operatorname{Pr}\left\{Y_{3,8}=0\right\}=\frac{e^{-\lambda_{3}(8)}\left(\lambda_{3}(8)\right)^{0}}{0!} \approx 0.98$

Solutions to Problem 3.

a. Let $\left\{Y_{0, t}: t \geq 0\right\}$ be a Poisson process with rate $\lambda_{0}=400$, representing the arrival of requests for the chatbot. Let $\left\{Y_{1, t}: t \geq 0\right\}$ be a Poisson process with rate $\lambda_{1}=1000$, representing the arrival of requests for the image generator. Therefore, $Y_{t}=Y_{0, t}+Y_{1, t}$ follows a Poisson process with rate $\lambda=\lambda_{0}+\lambda_{1}=1400$.

$$
\operatorname{Pr}\left\{Y_{1,5}>2000\right\}=1-\operatorname{Pr}\left\{Y_{1,5} \leq 2000\right\}=1-\sum_{k=0}^{2000} \frac{e^{-1400(1.5)}(1400(1.5))^{k}}{k!} \approx 0.985
$$

b. Let $Y_{A, t}$ and $Y_{B, t}$ be the number of arrivals to servers A and B , respectively. By the decomposition property, $Y_{A, t}$ and $Y_{B, t}$ follow a Poisson process with rate $\lambda_{A}=(1 / 2) \lambda=700$ and $\lambda_{B}=(1 / 2) \lambda=700$, respectively. Moreover, these two Poisson processes are independent. Therefore,

$$
\begin{aligned}
\operatorname{Pr}\left\{Y_{A, 1.5}>1000 \text { and } Y_{B, 1.5}>1000\right\} & =\operatorname{Pr}\left\{Y_{A, 1.5}>1000\right\} \operatorname{Pr}\left\{Y_{B, 1.5}>1000\right\} \\
& =\left(1-\operatorname{Pr}\left\{Y_{A, 1.5} \leq 1000\right\}\right)\left(1-\operatorname{Pr}\left\{Y_{B, 1.5} \leq 1000\right\}\right) \\
& =\left(1-\sum_{k=0}^{1000} \frac{e^{-700(1.5)}(700(1.5))^{k}}{k!}\right)\left(1-\sum_{k=0}^{1000} \frac{e^{-700(1.5)}(700(1.5))^{k}}{k!}\right) \\
& \approx 0.877
\end{aligned}
$$

Solutions to Problem 4. Let $Y_{0, t}$ be the number of trucks by time t, which by the decomposition property, follows a Poisson process with rate $\lambda_{0}=0.05(1)=0.05$. Similarly, let $Y_{1, t}$ be the number of all other automobiles by time t, which follows a Poisson process with rate $\lambda_{1}=0.95(1)=0.95$.
a. $\operatorname{Pr}\left\{Y_{0,60} \geq 1=1-\operatorname{Pr}\left\{Y_{0,60}=0\right\}\right.$

$$
\begin{aligned}
& =1-\frac{e^{-(0.05)(60)}\left((0.05)(60)^{k}\right.}{k!} \\
& \approx 0.95
\end{aligned}
$$

b. Since $\left\{Y_{0, t}: t \geq 0\right\}$ is independent of $\left\{Y_{1, t}: t \geq 0\right\}$, what happened to $Y_{0, t}$ is irrelevant. Therefore, $E\left[Y_{1,60}\right]=$ $60(0.95)=57$, and the expected total number of automobiles that have passed by in that hour is $10+57=67$.

Solutions to Problem 5.

a. In this situation, time-stationary means that demand is not time-dependent (i.e., no seasonal demand), and the market for $\mathrm{A}, \mathrm{B}, \mathrm{C}$ is not time-dependent (i.e., not increasing or decreasing).
b. Let $Y_{t}=$ total sales up to week t. Y_{t} follows a Poisson process with arrival rate $10+10=20$.

$$
\begin{aligned}
\operatorname{Pr}\left\{Y_{1}>30\right\} & =1-\operatorname{Pr}\left\{Y_{1} \leq 30\right\} \\
& =1-\sum_{k=0}^{30} \frac{e^{-20(1)}(20(1))^{k}}{k!} \approx 0.013
\end{aligned}
$$

c. Let $Y_{A, t}=$ total sales of A up to week $t, Y_{B, t}=$ total sales of B up to week t, and $Y_{C, t}=$ total sales of C up to week t. $Y_{A, t}$ follows a Poisson process with arrival rate $20(0.2)=4, Y_{B, t}$ follows a Poisson process with arrival rate $20(0.7)=14$, and $Y_{C, t}$ follows a Poisson process with arrival rate 20(0.1) $=2$.
Expected sales in 1 month:

$$
E\left[Y_{A, 4}\right]=4(4)=16 \quad E\left[Y_{B, 4}\right]=14(4)=56 \quad E\left[Y_{C, 4}\right]=2(4)=8
$$

Expected person-hours for 1 month:

$$
25 E\left[Y_{A, 4}\right]+15 E\left[Y_{B, 4}\right]+40 E\left[Y_{C, 4}\right]=25(16)+15(56)+40(8)=1560
$$

d. Let $Y_{B, t}^{L}=$ Louise's total sales of B up to week $t . Y_{B, t}^{L}$ follows a Poisson process with rate $10(0.7)=7$.

$$
\begin{aligned}
\operatorname{Pr}\left\{Y_{B, 2}^{L}-Y_{B, 1}^{L}>5 \text { and } Y_{B, 1}^{L}>5\right\} & =\operatorname{Pr}\left\{Y_{B, 2}^{L}-Y_{B, 1}^{L}>5\right\} \operatorname{Pr}\left\{Y_{B, 1}^{L}>5\right\} \quad \text { (independent increments) } \\
& =\operatorname{Pr}\left\{Y_{B, 1}^{L}>5\right\} \operatorname{Pr}\left\{Y_{B, 1}^{L}>5\right\} \quad \text { (stationary increments) } \\
& =\left(1-\sum_{k=0}^{5} \frac{e^{-7(1)}(7(1))^{k}}{k!}\right)^{2} \approx 0.4890
\end{aligned}
$$

